Generate predictions from a temporal discounting binary choice model.
Arguments
- object
A temporal discounting binary choice model. See
td_bcnm
.- newdata
Optionally, a data frame to use for prediction. If omitted, the data used to fit the model will be used for prediction.
- type
The type of prediction required. As in predict.glm,
"link"
(default) and"response"
give predictions on the scales of the linear predictors and response variable, respectively."indiff"
gives predicted indifference points. For predicting indifference points,newdata
needs only adel
column.- ...
Additional arguments currently not used.
See also
Other nonlinear binary choice model functions:
coef.td_bcnm()
,
deviance.td_bcnm()
,
fitted.td_bcnm()
,
logLik.td_bcnm()
,
residuals.td_bcnm()
,
td_bcnm()
Examples
if (FALSE) { # \dontrun{
data("td_bc_single_ptpt")
mod <- td_bcnm(td_bc_single_ptpt, discount_function = 'hyperbolic')
indiffs <- predict(mod, newdata = data.frame(del = 1:100), type = 'indiff')
} # }