Skip to contents

Temporal discounting models

td_ipm()
Temporal discounting indifference point model
td_bclm()
Temporal discounting binary choice linear model
td_bcnm()
Temporal discounting binary choice nonlinear model
td_ddm()
Temporal discounting drift diffusion model

Discount functions

td_fn()
Predefined or custom discount function
discount_function()
Get discount function from model

Scoring response data

adj_amt_indiffs()
Indifference points from adjusting amount procedure
indiffs()
Get model-free indifference points
kirby_score()
Kirby MCQ-style scoring
wileyto_score()
Wileyto score a questionnaire
most_consistent_indiffs()
Experimental method for computing indifference points

Data quality checks

nonsys()
Check for non-systematic discounting
attention_checks()
Test for failed attention checks
kirby_consistency()
Compute consistency score
invariance_checks()
Check for invariant responding

Model-agnostic measures of discounting

AUC()
Area under the curve (AUC)
ED50()
Median effective delay

Methods

plot(<td_um>)
Plot models
coef(<td_bclm>)
Extract model coefficients
coef(<td_bcnm>)
Extract model coefficients
coef(<td_ddm>)
Extract model coefficients
coef(<td_ipm>)
Extract model coefficients
deviance(<td_bcnm>)
Model deviance
deviance(<td_ddm>)
Model deviance
fitted(<td_bcnm>)
Get fitted values
fitted(<td_ddm>)
Get fitted values
fitted(<td_ipm>)
Get fitted values
logLik(<td_bcnm>)
Extract log-likelihood
logLik(<td_ddm>)
Extract log-likelihood
logLik(<td_ipm>)
Extract log-likelihood
predict(<td_bclm>)
Model Predictions
predict(<td_bcnm>)
Model Predictions
predict(<td_ddm>)
Model Predictions
predict(<td_ipm>)
Model Predictions
residuals(<td_bcnm>)
Residuals from temporal discounting model
residuals(<td_ipm>)
Residuals from temporal discounting model

Datasets

td_bc_single_ptpt
Binary choice data for a single participant
adj_amt_sim
Simulated adjusting amount procedure
td_ip_simulated_ptpt
Simulated indifference point data for a single participant
td_bc_study
Binary choice data for a study